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Shape oscillations of a viscoelastic drop

Damir B. Khismatullin* and Ali Nadim
Department of Aerospace and Mechanical Engineering, Boston University, Boston, Massachusetts 02215
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Small-amplitude axisymmetric shape deformations of a viscoelastic liquid drop in microgravity are theoreti-
cally analyzed. Using the Jeffreys constitutive equation for linear viscoelasticity, the characteristic equation for
the frequency and decay factor of the shape oscillations is derived. Asymptotic analysis of this equation is
performed in the low- and high-viscosity limits and for the cases of small, moderate, and large elasticities.
Elastic effects are shown to give rise to a type of shape oscillation that does not depend on the surface tension.
The existence of such oscillations is confirmed by numerical solution of the characteristic equation in various
regimes. A method for determining the viscoelastic properties of highly viscous liquids based upon experi-
mental measurements of the frequency and damping rate of such shape oscillations is suggested.
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I. INTRODUCTION

Many natural and industrial processes involve shape
formations of liquid drops. Examples include cell division
biology, containerless materials processing in space, imp
between stellar objects, spraying and atomization, evalua
radar cross sections of rain clouds, and indirect measurem
of rheological parameters. An example of the latter is
follows: In microgravity, an incompressible liquid drop a
sumes a spherical shape at equilibrium. This shape ca
perturbed by external means. When the external perturba
is removed, the drop eventually returns to its original sph
cal form. Depending upon the bulk properties of the liqu
and the surface parameters this process may take the for
underdamped oscillations about or overdamped aperiodic
cay toward the spherical shape. Experimental measurem
of the frequency and damping rate of shape oscillati
through the acoustic levitation technique would thus ena
the physical properties of the liquid to be inferred@1–3#.

The study of shape oscillations of liquid drops began w
the work of Lord Kelvin@4# where the frequency of inviscid
shape oscillations was determined. Lamb@5# developed ap-
proximate expressions for the damping rate of weakly v
cous liquid drop oscillations. Reid@6# analyzed a viscous
liquid drop in a vacuum or low density gas and derived
characteristic equation for the frequency and damping rat
the shape oscillations; this was subsequently solved num
cally by Chandrasekar@7#. Miller and Scriven@8# extended
Reid’s results by including intrinsic surface rheological pro
erties and considering a drop immersed in another imm
cible fluid. Further refinements were made by Prosperetti@9#
and Marston@10#.

In recent years the emphasis has shifted to investiga
surface viscoelastic effects on the shape oscillations
weakly viscous drops. In particular, Lu and Apfel@2# con-
sidered the case of a purely viscous liquid drop oscillating
another fluid with and without surfactants. Approximate an
lytical solutions for free-oscillation frequency and dampi
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rate were derived and numerically analyzed by Tian, H
and Apfel@11# by introducing surface compositional elasti
ity and surface dilatational and shear viscosity. Apfelet al.
@12# demonstrated experimentally the important role of s
factants in liquid drop oscillations under microgravity~see
also Ref.@13#!. On the numerical side, Lundgren and Ma
sour@14# first implemented the boundary integral method f
numerical simulations of clean axisymmetric drops. T
same method was used by Feng and Su@15# to simulate a
liquid drop in an acoustic field and by Rush and Nadim@16#
for a weakly viscous two-dimensional drop.

To our knowledge, the role of bulk viscoelasticity on th
axisymmetric shape oscillations of a liquid drop has not be
investigated previously, although transient deformation o
viscoelastic drop in a steady uniaxial extensional flow o
Newtonian liquid has been considered@17#. As we will show
here, viscoelasticity of the liquid appears to have a stro
influence on the shape oscillations of liquid drops and ign
ing this factor when dealing with polymeric and biologic
liquids may introduce large errors. Moreover, it appears to
feasible to infer the elastic parameters of the liquid fro
experimental measurements of the frequency and dam
rate of shape oscillations.

We present here a complete analysis of small-amplit
axisymmetric shape deformations of viscoelastic liquid dro
in microgravity assuming the Jeffreys constitutive equat
for linear viscoelasticity. Since during small-amplitude sha
oscillations the liquid is subject to small strains, linear v
coelasticity should represent a valid model. We derive
characteristic equation for the frequency and decay facto
the shape oscillations and analyze it asymptotically in
cases of small and large Reynolds number~high- and low-
viscosity limits!. When the Reynolds number is large, th
liquid drop undergoes shape oscillations due to surface
sion, i.e., elasticity has a minor effect on the drop dynam
A decrease in the Reynolds number results in the disapp
ance of the oscillations. However, upon adding elasticity
that limit ~once a critical value of the relaxation time is e
ceeded!, a shape oscillation is seen to emerge, determi
solely by the viscous and elastic stresses. This allows
alternative means of estimating the viscoelastic propertie

r
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liquids based on measuring the frequency and damping
of liquid drop shape oscillations. We show that a furth
increase in the relaxation time and viscosity leads to the
currence of additional shape oscillation modes, so tha
large number of such modes exist for incompressible ela
solid balls with a small shear modulus. Numerical solution
the characteristic equation confirms the results of
asymptotic analysis.

II. BASIC EQUATIONS AND BOUNDARY CONDITIONS

Consider a spherical viscoelastic liquid drop of radiusR
surrounded by a vacuumlike medium. It is assumed that
Bond numberB5gR2(r l2rm)/s is much less than unity
the liquid is incompressible and isothermal, and the d
undergoes small-amplitude deformations. Hereg is the ac-
celeration of gravity,r l andrm are the densities of the liquid
and the medium respectively, ands is the surface tension
The continuity equation for the liquid takes the form

“•v50, ~1!

and upon neglect of the gravitational force and nonlin
terms the momentum equation reduces to

r l

]v

]t
52“p1“•t. ~2!

The deviatoric stress tensort allows for viscoelasticity of the
liquid in the form of the linear Jeffreys constitutive equati
@18#:

t1l1

]t

]t
52mS ġ1l2

]ġ

]t
D , ġ5

1

2
~“v1“v†! ~3!

whereġ is the rate-of-strain tensor,v is the velocity vector,
m is the shear viscosity, andl1 andl2 represent the ‘‘relax-
ation’’ and ‘‘retardation’’ times.

Equations~1!–~3! need to be supplemented by bounda
conditions at the drop surface (s). Denote the outward uni
normal and velocity vectors at the surface byn and vs and
note that by assumption the stress tensor in the external
dium is negligible. The kinematic and dynamic bounda
conditions at the surface are then given by

vus5vs , ~pn2n•t!s5s~“s•n!n ~4!

where“s•n is the total surface curvature of the drop, wi
“s[“2nn•“.

Consider a spherical coordinate system (r ,Q,w), intro-
duce a small parameter« that measures the amplitude of th
drop deformation, and assume the shape oscillations to
axisymmetric. For a pure mode, the surface profile of
drop r s can be expressed in terms of the Legendre poly
mial Pn(cosQ)

r s5R@11«CnPn~cosQ!exp~2ant !#, ~5!

where Cn and an5d1 iv are unknown parameters. Obv
ously, the real partd of an is the amplification or decay
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factor ~positive values ofd correspond to damping! and its
imaginary partv is the angular frequency of shape oscill
tions

d5Real$an%, v5Im$an%. ~6!

The general solution forp, v, andt can then be expande
as

p~r ,Q,t !5
2s

R
1«r lvL

2R2 an~r !Pn~cosQ!exp~2ant !,

~7a!

v r~r ,Q,t !5«vLR bn~r !Pn~cosQ!exp~2ant !, ~7b!

vQ~r ,Q,t !5«vLR gn~r !
dPn~cosQ!

dQ
exp~2ant !, ~7c!

t~r ,t !5t (n)~r !exp~2ant !, ġ ~r ,t !5ġ (n)~r !exp~2ant !,
~7d!

wherer is the position vector andvL is the Lamb frequency
@5#, which for a drop in vacuum is given by

vL5Asn~n21!~n12!

r lR
3

. ~8!

Substituting Eq.~7d! into the constitutive equation~3!
shows that

t (n)52meffġ
(n), meff5mS 12anl2

12anl1
D . ~9!

We thus see that for an exponential time dependence,
coelasticity of the liquid can be incorporated into axisym
metric shape oscillations of the drop as a modification of
shear viscosity. It is clear that the momentum equation~2!
simply becomes the linearized Navier-Stokes equation
which the shear viscositym has been replaced by the effe
tive viscositymeff

r l

]v

]t
52“p1meff¹

2v. ~10!

When Eqs.~7a!–~7c! are substituted into Eqs.~1! and ~10!
we obtain

an~r !5AnS r

RD n

, ~11a!

bn~r !5nAnS vL

an
D S r

RD n21

1BnS R

r D j n~kr !, ~11b!

gn~r !5AnS vL

an
D S r

RD n21

1
Bn

n S R

r D F j n~kr !2
~kr ! j n11~kr !

n11 G ,
~11c!

whereAn , Bn are unknown coefficients;j n is the spherical
Bessel function of ordern, and k5Aanr l /meff. The con-
8-2
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stantsAn , Bn , Cn , andan can be found from the boundar
conditions~4! that take the forms

v rU
r 5r s

5
]r s

]t
, ~p2t rr !r 5r s

5s~“s•n!, t rQU
r 5r s

50,

~12!

with

~“s•n!r 5r s
5

1

R
@21«~n21!~n12!CnPn~cosQ!

3exp~2ant !#.

III. DECAY FACTOR AND OSCILLATION FREQUENCY

Upon defining the dimensionless variables

p̃5
p

r lR
2vL

2
, ṽ5

v

RvL
, t̃ 5vLt, r̃ 5

r

R
,

and substituting Eqs.~5!, ~7!, and~11! into Eq. ~12! we ob-
tain a linear system of algebraic equations inAn , Bn , Cn ~at
order«)

nAn1
anj n~z!

vL
Bn1

an
2

vL
2

Cn50, ~13a!

F2n~n21!

z2
21GAn1

2an

vLz2
@~n21! j n~z!2z jn11~z!#Bn

1
Cn

n
50, ~13b!

2~n21!An1
an

vLn~n11!
@~2n2222z2! j n~z!

12z jn11~z!#Bn50, ~13c!

where

z5kR5RAr lan~12l1an!

m~12l2an!
. ~14!

Nontrivial solutions of system~13! exist only if its coef-
ficient determinant is zero,

2~n21!~2n11!2S 11
vL

2

an
2D z212Q~z!

3F S 11
vL

2

an
2D 2

2n~n21!~n12!

z2 G50, ~15!

where

Q~z!5
z jn11~z!

j n~z!
. ~16!
06150
This characteristic equation foran provides a way of evalu-
ating the decay factord and the angular frequencyv of free
oscillations of a viscoelastic liquid drop. As seen from E
~14!, the variablez is a more complicated function ofan
compared with the purely viscous case. However, the eq
tion retains its form. Actually, rearrangement of Eq.~15!
gives the result

S vL

an
D 2

5
2~n221!

z222zW~z!
211

2n~n21!

z2 F12
~n11!W~z!

z/22W~z! G ,
~17!

with W(z)5 j n11(z)/ j n(z)5Q(z)/z, which was obtained by
Reid @6# for surface oscillations of a viscous liquid drop~see
also @7,8#!.

Due to the presence of spherical Bessel functions in
~15! it is impossible to calculatean at finite values of the
shear viscositym analytically. Straightforward analysi
shows that there are an infinite number of roots of Eq.~15!,
depending critically on the values of the relaxation and
tardation timesl1 andl2, as well as the surface tensions.
In the purely viscous case most of the roots are real
represent various aperiodic modes of decay in the drop sh
oscillations. These real roots correspond to the poles ofQ(z)
@which occur at the zeros ofj n(z)] because in the neighbor
hood of each of these poles the left-hand side of Eq.~15! has
a zero @7#. However, the asymptotic behavior ofan for z
→0 andz→` can be readily established.

Before proceeding with the asymptotic analysis, it is b
to choose dimensionless parameters that are appropriat
the limiting cases to be studied. These parameters include
Reynolds number Re, and the relaxation and retarda
Deborah numbers De1 and De2:

Re5
r lvLR2

m
, De15vLl1 , De25vLl2 . ~18!

Equation~15! then becomes

S 11
1

x2D z222Q~z!F S 11
1

x2D 2
2n~n21!~n12!

z2 G
52~n21!~2n11! ~19!

with

z25
Rex~12De1 x!

12De2 x
, x5

an

vL
. ~20!

It is clear that the casesz→0 andz→` correspond to the
high viscosity Re→0, and low viscosity Re→`, limits, re-
spectively.

A. High-viscosity limit

For small z,Q(z) can be expanded in powers ofz @19#:

Q~z!uz→05
z2

2n13 F11
z2

~2n13!~2n15!G1O~z6!,

~21!
8-3
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and Eq.~19! reduces to

z2F11En1
1

x2G5
2~n21!~2n214n13!

2n11
,

En5
4n~n21!~n12!

~2n11!~2n13!~2n15!
. ~22!

1. Purely viscous liquid drop

A deformed drop of a highly viscous liquid returns to
spherical shape aperiodically, i.e., there exists a critical va
of viscosity mc , such that ifm.mc , no shape oscillations
occur. This is supported by the numerical solution of E
~17! presented by Chandrasekar@7# ~see also the next sec
tion!.

In the high-viscosity limit there are only two possib
modes of aperiodic decay. Indeed, in a Newtonian fl
(De15De250) Eq. ~22! becomes quadratic inx. Both roots
of this equation are real. The first root is proportional to
and therefore determines the extremely slow decay. It is e
to show by going back to dimensional variables that t
mode exists due to a nonzero surface tension (s or vL.0)
@7#:

d15x1vL5
~2n11!r lR

2vL
2

2~n21!~2n214n13!m

5
n~n12!~2n11!s

2~2n214n13!mR
. ~23!

In contrast, the second root gives a decay factor that
creases without bound as Re→0. The existence of this mod
is explained solely by the action of viscous forces on
drop,

d25x2vL5
2~n21!~2n214n13!m

~2n11!~11En!r lR
2

. ~24!

It should be noted that the asymptotic expansion~21! holds
as z→0 but not for z5RAd2r l /m;O(1). Even so, the
power series forQ(z) remains convergent and terms of ord
z6 ~and higher! are rather small such that the high-viscos
root of Eq. ~15!, corresponding to a very rapid decay,
approximately equal to Eq.~24!. For example, in the case o
quadrupole deformations (n52), numerical analysis~of the
type carried out in Sec. IV! for a typical water drop shows
the difference between these roots to be less than a few
cent.

2. Viscoelastic liquid drop

The presence of elastic components in the stress te
has a significant effect on the deformations of a highly v
cous drop. In particular, such a drop can undergo shape
cillations rather than just an aperiodic decay. This follo
from Eq. ~22! that is now cubic
06150
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De1 Rex32~Re1Fn De2!x21S Re De1
11En

1FnD x

2
Re

11En
50. ~25!

This equation has complex roots under the condition tha

A4

Re4
1

A3

Re3
1

A2

Re2
1

A1

Re
1A0.0, ~26!

where

Fn5
2~n21!~2n214n13!

~2n11!~11En!
,

A05
4

11En
F De1

2

11En
11G2

,

A15
4Fn

11En
F De1

2

11En
~3 De125 De2!25 De113 De2G ,

A25Fn
2F2

De1
2 De2

2

~11En!2
1

2

11En

3~6 De1
2211 De1 De216 De2

2!21G ,

A352Fn
3F De2

2

11En
~2 De22De1!12 De12De2G ,

A452Fn
4 De2

2 .

From Eq.~26! it can be seen that shape oscillations occur
a wide range of relaxation Deborah numbers De1 but only
for small values of the retardation Deborah number De2. As
Re→0 the dominant term in this condition is theA4 term. It
is negative and the condition~26! would not be satisfied
unless De2

2,4 Re De1 /Fn . We see that shape oscillations
high-viscosity liquid drops appear due to the presence
relaxation terms in the constitutive equation but can be s
pressed by the retardation terms. We therefore restrict
attention to liquids with small retardation times.

To obtain asymptotic solutions of Eq.~25!, since Re is
small, we assume solutions of the form

x5Ren@x(0)1Re§ x(1)1Re2§ x(2)1•••# ~27!

wheren and § are to be determined so that the expans
~27! is uniformly valid for Re→0.

One obvious possibility isn5§51. We then get a solu-
tion that describes a small aperiodic decay of viscoela
liquid drop deformations by

x15
Re

Fn~11En! F11
Re~De22De1!

Fn~11En! G1O~Re3!. ~28!

Note that the leading term of Eq.~28! agrees with the purely
viscous solution~23!. Since the retardation time must alway
be less than the relaxation one (De2,De1) @18# the decay
8-4
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factor d15vLx1 decreases with adding elasticity, i.e., a v
coelastic liquid drop returns to its spherical shape m
slowly than a purely viscous one.

The other choice ofn and§ that gives the next two solu
tions is governed by the relative sizes of De1 and Re. One
should choosen521, §51 for small De1 and De2, i.e., in
the case of small elasticity

De15j Re, De25x Re with j, x5O~1!.

The solution takes the forms

x2,35
~11xFn!~17X!

2j Re

1
j Re@22~11xFn!~17X!#

~11En!@~11xFn!2~17X!24jFn#
1O~Re2!,

~29!

where

X5A124jFn~11xFn!22, ~30!

and become complex when 4jFn.(11xFn)2. There there-
fore exists a critical relaxation time

l1c5
~2n11!~11En!rR2

8~n21!~2n214n13!m

3F11
2~n21!~2n214n13!l2m

~2n11!~11En!rR2 G 2

, ~31!

such that ifl1.l1c andm is large a viscoelastic liquid drop
undergoes shape oscillations. As indicated above the reta
tion components of the stress tensor hinder the occurrenc
oscillations. Increasingl2 results in a significant rise inl1c
when the liquid viscosity is large.

The resulting shape oscillations subsist solely on
forces given by the stress tensor~3! and not on surface ten
sion. To show this, we go to dimensional variables,an2
5vLx2 , an35vLx3. For simplicity, neglect the secon
term of Eq. ~29!, assumel15l1c1L1 , l250 and recall
that j5ml1 /(r lR

2) and x5ml2 /(r lR
2)50. The angular

frequency of shape oscillations then does not depend onvL

vs52Im$an2%5Im$an3%

5A2~n21!~2n214n13!mL1

~2n11!~11En!r lR
2l1c

2
, ~32!

i.e., the oscillations take place even with no surface tens
s5vL50. Thus, elasticity of the liquid leads to anoth
kind of shape oscillation governed only by the viscous a
elastic stresses in the drop.

The validity of Eq.~29! is further supported by the fac
that the second solutionx2 agrees with the mode of rapi
aperiodic decay~24! in the limit l1 ,l2→0. The third rootx3
comes into existence due to the relaxation components in
stress tensor. Whenl1 ,l2→0
06150
e

a-
of

e

n,

d

he

x35
11xFn

j Re
2

Fn~12xFn!

Re
1o~j,x!.

In the purely viscous casex3 and the decay factord3
5vL Real(x3) go to infinity, i.e., there is no contribution o
this mode to the drop deformation. The inclusion of the
laxation components leads to finite values ofx3. For a small
l1 we once again have a mode of aperiodic decay. Whenl1
is increased this mode plays an increasingly important pa
the drop deformation, because the greater thel1, the smaller
the decay factord3. But as soon asl1 reaches its critical
valuel1c the modes of aperiodic decay given byx2 andx3
are transformed to a mode of decaying shape oscillati
with the frequency~32!.

Let us now consider the case of moderate elasticity,

De25x Re, Re!De1!1/Re, x5O~1!.

To obtain the complex solutions of Eq.~25! we now taken
521/2, §51/2 and substitute Eq.~27! into Eq. ~25!. The
solutions are in the form

x2,35
11Fnx

2 De1
1

Re

2 F x

~11En!
2

~11Fnx!3

4Fn De1
G

7 iA Fn

Re De1
H 12

Re

2Fn
F ~11Fnx!2

4 De1
1

De1

11En
G J

1O~Re3/2!. ~33!

They describe a mode of decaying shape oscillations with
angular frequency

vs'A2~n21!~2n214n13!m

~2n11!~11En!r lR
2l1

~34!

and the decay factor

ds'
1

2l1
F11

2~n21!~2n214n13!ml2

~2n11!~11En!r lR
2 G . ~35!

It is significant that the frequency decreases with incre
ing relaxation and retardation times as seen from Eq.~33!.
But Eq. ~32!, which is valid for the relaxation times close t
l1c , exhibits an opposite dependence on frequency. He
with increasingl1 from l1c the frequency rises, attaining
maximum value at the relaxation time

l1m'3l1c , ~36!

and then falls off. The valuel1m was found from the extre-
mum condition

d Im~x3!

dl1
U

l15l1m

50.

The maximal value of the frequencyvsm is found to be
8-5
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vsm5
4~n21!~2n214n13!m

A3~2n11!~11En!r lR
2

3F11
2~n21!~2n214n13!l2m

~2n11!~11En!rR2 G21

. ~37!

Finally, the high elasticity case

l15m/G, l250 with G5O~1!

is suitable for describing an incompressible elastic so
‘‘ball’’ in a vacuumlike medium because, upon neglectin
small terms, the stress tensor is then equivalent to

t 52Gg, ~38!

whereg is the strain tensor.
The pattern of shape oscillations becomes very comp

for largel1 ~now De1@1/Re). From Eq.~20! it follows that
if

x.
1

De1
, ~39!

the argumentz is imaginary. This means that the root of E
~22! satisfying the condition~39! becomes complex valued
Moreover, in the case of high elasticity the argumentz is not
small and the high-viscosity asymptotics do not apply. T
characteristic equation~15!, as indicated above, has an in
nite number of real solutions in the purely viscous case. T
take values from near zero, given by the slowly decay
mode~23!, to infinity. Adding elasticity to the stress tens
causes some of these roots, corresponding to the hig
modes of aperiodic decay, to become complex valued. H
frequency modes of shape oscillation come into existen
When the relaxation time is small, all these modes have v
large decay factors. They die out far in advance of the n
mal mode given by the solution~33! and cannot influence th
drop deformation. Increasing the relaxation time results
additional complex-valued roots being generated from
real ones, as seen from Eq.~39!. Their decay factors are
small compared to the ‘‘first’’ high-frequency modes b
cause the greater the frequency of a mode, the faste
damping. Finally, in the case of high elasticity, we find
large number of weakly decaying modes of oscillation.

B. Low-viscosity limit

Suppose now that the shear viscosity of the liquid is sm
so that Re and hencez tend to infinity. The asymptotic form
of the characteristic equation is then readily available fr
Eq. ~17!. Whenz→` the functionW(z) remains finite ev-
erywhere apart from its poles. It is easy to verify that t
poles cannot be solutions of Eq.~17! in this limit. Thus we
can assumeW(z) to be negligibly small compared toz.
Equation~17! then reduces to the form
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x2D z252~n21!~2n11! ~40!

with z andx given in Eq.~20!.
The reduction in the shear viscosity brings into existen

shape oscillations in purely viscous liquid drops. In the lim
Re→`, as seen from Eq.~40! where De1 and De2 are set to
zero, the surface of the drop oscillates with the angular
quencyv5vL Im(x),

v5vL@11O~Re22!#

and the decay factord5vL Real(x)

d5
~n21!~2n11!m

2r lR
2

.

This result was first obtained by Lamb@5# and investigated
in detail by Chandrasekar@7#. Obviously, there exists only
one mode of surface oscillation and no modes of aperio
decay in the low-viscosity limit.

Here again elasticity leads to a cubic equation forx,

De1 Rex32@Re1Gn De2#x21@Gn1Re De1#x2Re50,
~41!

whereGn52(n21)(2n11). Once again, complex roots oc
cur under the condition~26! but with

A054@De1
211#2,

A154Gn@De1
2~3 De125 De2!25 De113 De2#,

A25Gn
2@2De1

2 De2
212~6 De1

2211 De1 De216 De2
2!21#,

A352Gn
3@De2

2~2 De22De1!12 De12De2#,

A452Gn
4 De2

2 .

Now 1/Re→0 and the major contribution to this conditio
comes from the terms withA0 and A1 that are positive for
small De1 and De2. This is not surprising because a pure
viscous liquid drop already undergoes shape oscillati
when viscosity is low. The question of interest here is to fi
when these oscillations do not occur. Increasing De2 does
not accomplish this. The condition for complex roots~i.e.,
oscillation! is satisfied even when De25De1→` because the
dominant term in Eq.~26! is theA0 term ~as 1/Re→0) and
even if De1 and De2 get large, that term still remains dom
nant. Hence elasticity has a minor effect on shape osc
tions in the low-viscosity limit. Nevertheless, a mode of ap
riodic decay appears that is due to viscoelastic propertie
the liquid. In order to understand this better, consider
asymptotic solution of Eq.~41!. The solution can again be
sought in the form~27! with § less than zero.

Let us restrict our attention to the case of moderate e
ticity, so that De1 , De25O(1). In order to obtain all the
solutions we supposen50 and§521 in Eq. ~27!. We then
obtain an aperiodic decay solution of the form

x15
1

De1
1

Gn~De22De1!

Re De1~11De1
2!

1O~Re22! ~42!
8-6
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and the oscillatory solutions

x2,35
Gn~11De1 De2!

2 Re~11De1
2!

6 i F11
Gn~De12De2!

2 Re~11De1
2!

G
1O~Re22!. ~43!

The x1 gives a mode of aperiodic decay that is damped
very fast in the limit De1→0 and, as discussed above, mak
no contribution in the subsequent drop deformation in t
limit. For the other roots, elasticity lowers the decay fac
and slightly enhances the frequency of shape oscillations
dimensional form

v5vL Im~x2!5vL1vel ,

vel5
~n21!~2n11!mvL~l12l2!

r lR
2~11vL

2l1
2!

. ~44!

It is noteworthy that the correction to the frequency due
elasticity vel is at its maximum when De151, i.e., l1
51/vL . In contrast to the high-viscosity limit, there are n
shape oscillations whens5vL50, i.e., low-viscosity drops
oscillate due to surface tension only.

IV. QUADRUPOLE OSCILLATIONS: NUMERICAL
ANALYSIS

In the case of quadrupole deformations (n52), the nu-
merical solution of the characteristic equation~15! has been
found using Maple. The first case to be investigated i
water drop of the radiusR50.1 mm in zero gravity. A poly-
mer is assumed to be dissolved in the water at low eno
concentration that the surface tension, density and shear
cosity are not affected:r l5103 kg m23, s50.073 kg s22,
m50.001 kg m21 s21, but the drop begins to take on vis
coelastic properties. This addresses the question of how
ticity influences the drop deformation. In this case the La
frequencyvL , given by Eq.~8!, is vL'24 166 s21. The
Reynolds number Re5r lR

2vL /m is much more than unity
Re'241, and one would expect the occurrence of shape
cillations even without elasticity~low-viscosity limit!. Figure
1~a! shows the change in the nondimensional frequency
shape oscillations with increasing the relaxation Debo
number De15vLl1 (De2 is taken to be zero!.

The frequency grows with increasing De1, attains a maxi-
mal value at De151, and then slowly falls off. This agree
with the low-viscosity asymptotic formula~43!. There is a
small difference between theoretical and numerical res
that disappears if terms of order 1/Re are accounted fo
Eq. ~43!. The dependence of the decay factor on the rel
ation Deborah number is illustrated in Fig. 1~b!. We have
good agreement between asymptotic and numerical calc
tions: the decay factor decreases with increasing De1. The
small discrepancy is again due to the neglect of terms
order 1/Re in Eq.~43!.

As discussed earlier, highly viscous liquid drops reg
their original spherical shapes without oscillation. By this
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is meant that there exists a critical value of viscositymc such
that if m.mc shape oscillations do not occur. Numeric
analysis validates this observation. As displayed in Fig. 2
frequency vanishes atm5mc'0.0655 kg m21 s21. Here the
density, surface tension, and radius of the drop are iden
with those in Fig. 1 but elasticity has not been taken in
account (De150). The critical Reynolds number is the

FIG. 1. Quadrupole shape oscillations of a drop comprised
water and a low-fraction polymer material:~a! frequency and~b!
decay factor versus the relaxation Deborah number. The solid
is the numerical solution of Eq.~15!; the dashed line corresponds
the asymptotic solution ~43!. Parameters: R50.1 mm, r l

5103 kg m23, s50.073 kg s22, m50.001 kg m21 s21, De250.

FIG. 2. Quadropule shape oscillations of a purely viscous liq
drop: frequency versus shear viscosity. Parameters:R50.1 mm,
r l5103 kg m23, s50.073 kg s22, De15De250.
8-7
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DAMIR B. KHISMATULLIN AND ALI NADIM PHYSICAL REVIEW E 63 061508
Re5Rec'3.69. Hence, any purely viscous liquid drop wi
the Reynolds number Re,3.69 does not undergo shape o
cillations.

Elasticity of the liquid leads to a reduction in this critic
Reynolds number because oscillations disappear even
Re53.72.Rec @Fig. 3~a!#. What is more important, how
ever, is that a further increase in De1 to a value above
De1c'0.14122 causes a nonzero frequency to appear a
@Fig. 3~b!#. A shape oscillation depending on the stress
not on surface tension is generated. The critical relaxa
Deborah number De1c , as illustrated in Fig. 4~a!, decreases
with a reduction in the Reynolds number. Increasing D1
beyond De1c results in a fast rise of frequency, especially
low Reynolds numbers, to the maximal valuef m
5vm /(2p) followed by a decrease in frequency with add
tional increase of De1. Such an elasticity dependence of fr
quency is consistent with the results of asymptotic analy
in the case of high viscosity. Figure 4~b! shows how the
decay factor depends on elasticity. It decreases monot
cally with increasing De1. Formula ~31! approximates the
critical relaxation timel1c5De1c /vL for various values of
viscosity very well~Fig. 5!. Thus, Eq.~31! gives the actual
minimal value of relaxation time needed for ‘‘elastic’’ shap
oscillations in most viscoelastic liquid drops.

Figure 6 demonstrates the hinderance due to the reta
tion time of the occurrence of ‘‘elastic’’ shape oscillation

FIG. 3. Variation of frequency of drop shape oscillation vers
the relaxation Deborah number: Re53.72, the remaining param
eters are identical with those in Fig. 1.
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An increase in the retardation Deborah number De2 leads to
a rise of the critical relaxation Deborah number De1c and a
decrease in the frequency of shape oscillation. This is fully
accord with the results of asymptotic analysis.

In the case of moderate elasticity@l15De1 /vL
5O(1/vL)# the dependence of frequency and decay fac

s

FIG. 4. Variation of frequency and decay factor of drop sha
oscillation versus the relaxation Deborah number for different v
ues of shear viscosity (De250).

FIG. 5. Comparison between the numerical solution and
approximate formula~31! of the critical relaxation time versus vis
cosity (R50.1 mm,r l5103 kg m23, s50.073 kg s22, De250).
8-8
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of viscoelastic drop oscillation on the relaxation time is
alistically described by the asymptotic formulas~34! and
~35!. Numerical analysis verifies the statement that both
frequency and the decay factor decrease with increasing
laxation time ~Fig. 7!. But there is some quantitative dis
agreement between the numerical solutions and
asymptotic results at high values of the relaxation time. A
tually, increasing the relaxation time leads to an increas
the argumentz in the characteristic equation~15! and the
high-viscosity approximation ceases to be valid.

As indicated above, whenl1 and m tend to infinity, we
have a model of an elastic solid sphere instead of a viscoe
tic liquid. A large number of shape oscillation modes ex
for elastic solid balls. Figure 8 shows decay factors~ordi-
nate! and frequencies~abscissa! for the first 14 modes ob
tained from the numerical solution of Eq.~15! at m
5100 kg m21 s21 andl1510 s, i.e.,G5m/l1510 Pa. The
density, radius, and surface tension are identical with th
in Figs. 1 and 2. The first mode has the frequencyvs
5vL Im(x)*1/l1, i.e., all these modes satisfy the conditio
~39!. The modes are damped out almost simultaneously
slowly, apart from one mode~number 6! that has a much
smaller decay factor and can be referred to as the nor
mode of oscillation. It is easy to check that the frequency
this mode is almost equal to the Lamb frequency, i.e., i
well approximated by the low-viscosity solution~43!. Actu-
ally, the relaxation Deborah number is now De15vLl1
@Re and the argumentz in Eq. ~15! is very large and corre
sponds to the low-viscosity limit. Elastic solid balls therefo
undergo high-frequency shape oscillations initially. For lo
times, however, the remaining dominant angular frequenc
simply the Lamb frequency determined by surface tensio

V. CONCLUSION

The characteristic equation determining the frequency
decay factor for shape oscillations of a viscoelastic liq
drop has been derived and investigated analytically and

FIG. 6. Variation of the frequency of drop shape oscillati
versus the relaxation Deborah number for different retarda
Deborah numbers (Re50.24).
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merically. Asymptotic solutions of the equation obtained
the high-viscosity~low Reynolds number! limit have shown
the occurrence of a different kind of shape oscillation on
the relaxation time exceeds a critical value. This critic
value decreases with increasing viscosity, i.e., even sm
elasticity would enable a highly viscous liquid drop to u
dergo shape oscillations.

n

FIG. 7. Comparison between the numerical and asymptotic
lutions ~34!, ~35! for the ~a! frequency and~b! decay factor of drop
shape oscillation as a function of the relaxation Deborah num
(Re50.24, De250).

FIG. 8. The first 14 modes of elastic solid ball shape oscillat
(G510 Pa!.
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DAMIR B. KHISMATULLIN AND ALI NADIM PHYSICAL REVIEW E 63 061508
From an experimental point of view, the regime that p
vides the most promising prospect for measuring the
coelastic properties is the one of high viscosity (Re!1) and
moderate elasticity (Re!De!1/Re). Suppose such a vis
coelastic liquid drop is levitated acoustically and its quad
pole mode (n52) of oscillation is excited, as is routinel
done with Newtonian drops and foams. The radius of
drop R, the liquid densityr l and the shear viscositym are
easy to measure independently. Upon measuring the
quency and decay factor of drop surface oscillations from
experiments, one would be able to calculate the relaxa
and retardation timesl1 andl2. As seen from Eqs.~34! and
~35!, these would be given by

l1'
2394

347

m

r lR
2vs

2
, l2'

2ds

vs
2

2
347

2394

r lR
2

m
, ~45!
y

.
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under the assumptions thatr lR
2/m!1/vL , l1@r lR

2/m,
l2!l1, andn52.

An increase in the relaxation time and viscosity w
shown to lead to the occurrence of additional shape osc
tion modes, so that a large number of such modes exist
incompressible elastic solid ‘‘balls.’’ Nevertheless~and
somewhat surprisingly!, the dominant angular frequency fo
shape oscillations of such an elastic ball at long times tu
out to be the Lamb frequency that is determined by surf
tension.
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